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XVIIL. Problems in Electric Convection.

By G. F. C. SEARrLE, M. 4., of Péterhouse, Cambridge, Demonstrator in Experimental
- Physics in the University of Cambridge.

Communicated by Professor J. J. THOMSON, F.R.S.
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Introduction.

1. TaE following paper is occupied by an attempt to investigate the distribution of
the electric and magnetic forces which are called into play when certain electro-
magnetic systems are made to move with uniform velocity through the ether.
MaxweLL's theory will be employed throughout, and will be applied to the exact

solution of several problems, and to the establishment of some results of a general
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676 MR. G. F. C. SEARLE ON PROBLEMS IN ELECTRIC CONVECTION.

nature. Professor J. J. THoMsoN was, I believe, the first to consider a problem of
this sort, his paper® giving the solution for the motion of a single electrical point-
charge at a speed small compared with that of light. Mr. OLIVER HEAVISIDE next
considered the question, and in his papert obtained an exact solution for the motion of
a pomnt-charge. He got the solution by means of the ¢ vector potential ” of the
convection current formed by the moving charge. The mathematical analysis is
of the symbolical kind, but it is shown that the result obtained by means of it
satisfies all the necessary conditions. By integrations Mr. HEAVISIDE obtains
solutions for the motion of some simple cases of electrical distribution. Mr. Heavi-
SIDE’S expression for the vector potential is

_ Ampu
i W »
which he re-writes in the form
A="_""" 4'n'pu/y_‘~’ s
1P
e

where A is the vector symbol for the vector potential, u the vector symbol for the
velocity of the electricity, whose volume density is p, and v is the velocity of light,
while p* = u? d?®/dz? and v* = d?/da?® + d?/dy® 4+ d?/dz® ; the motion is supposed to
take place parallel to the axis of z.

Mr. HEAVISIDE performs the operation 1/v?® first, and obtains

so that

The operation here indicated is then performed for the special case in which
A, = qu/r, corresponding to the motion of a single point-charge, and a correct value
of A is obtained.

[August 20, 1896.—But except in this simple case, there appears to be some

- . . . . 2 -l
difficulty in the interpretation of the two operations —15 and { 1 - —]2—0—2} when they
v 'V
are performed separately, For if the operations are performed separately and in
Mr. HEAVISIDE'S order for a uniformly charged sphere of radius ¢, the result is the

same as for a point-charge at its centre, since A, varies simply as the reciprocal of r

# ¢Phil. Mag.,” April, 1851.
t ¢ Phil. Mag.,” April, 1889, or ‘ Electrical Papers,’ vol. 2, p. 504,
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MR. G. F. C. SEARLE ON PROBLEMS IN ELECTRIC CONVECTION. 677

in both cases. This result is not correct, for it can be shown* that it is not a point-
charge, but a uniformly charged line of length 2au/v, which produces the same effect
as the uniformly charged sphere.]

Professor J. J. THoMsoN has also obtained the exact solution for a point-charge in
two different ways. In his first treatmentt he adopts MAXWELL'S equations
involving the Vector Potential, and an electrostatic potential ¥. In his last paper]
he finds the solution by the aid of his novel method of considering the phenomena of
the electromagnetic field as being brought about by the motion of tubes of electric
force. This paper may be considered as an attempt to take a step beyond MAXWELL'S
analytical theory, and to give a sort of material representation of the mechanism of
the electromagnetic field.

The result of all these investigations is that while the electric force due to a moving
point-charge is still radial, the intensity of the force, for a given distance from the
charge, gradually increases as the radius vector turns from the direction of motion to
a perpendicular direction. There is also a distribution of magnetic force, in which
the lines of force are circles centred on the axis of motion, the planes of the circles
being perpendicular thereto.

The fact that the electric force is radial led Mr. HEAVISIDE to form the conclusion
that the expression for the electric force due {0 a point-charge is the same as that due
to a charged sphere in motion carrying an equal charge, the distribution on the
sphere being such that o = KE, /4w, where E, is the electric force normal to the sur-
face which would be due to the point-charge placed at the centre of the sphere. But
the surface which gives rise to a field the same as that due to a point-charge is an
ellipsoid of revolution, whose minor axis, which is also the axis of figure, lies along
the direction of motion, and whose axes are in the ratios 1:1 :(1 — u?/v*)}, where u is
the velocity of the point and v is the velocity of light through the dielectric.* The
charge is distributed in the same way as if the ellipsoid were statically charged, i.e.,
the surface density is proportioned to the perpendicular from the centre on the
tangent plane. This surface I call the “ Heaviside ” ellipsoid.

Mr. HEAVISIDE appears to have thought that if there is no disturbance within a
closed surface, then the surface condition is that the electric force just outside the
surface should be normal to the surface. As this led to the supposed equivalence of
the sphere and the point, and as I convinced myself that this equivalence does not
exist, I asked Mr. HEAVISIDE about the matter. This led him to reconsider the
conditions which obtain at a surface bounding a region of zero disturbance, and he
showed§ that it is not the electric force which is perpendicular to the surface, but a
certain vector F. This vector F, I have shown, is simply the mechanical force

* This can be readily shown by the use of the auxiliary coordinates &, 7, ¢ of § 16 below.
+ ¢ Phil. Mag.,” July, 1889.

I ¢Phil. Mag.,” March, 1891, and ‘ Recent Researches in El. and Mag.,” p. 16.

§ ¢ Electrical Papers,” vol. 2, p- 514, and ¢ Electromagnetic Theory,” vol. 1, p. 273.


http://rsta.royalsocietypublishing.org/

A A

L

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

JA \

A B

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

678 MR. G. F. C. SEARLE ON PROBLEMS IN ELECTRIC CONVECTION.

experienced by a unit of positive electricity tn moiion at the same speed as the rest of
the system. 'This mechanical force experienced by the unit charge consists not only
of the part due to the existence of electric force in the field, but also of a part due to
the fact that the moving unit charge is acted on like a current element by the magnetic
induction,

Mathematical Abbreviations.

2. Certain mathematical forms occur so frequently in the theory of electro-
magnetism that it is convenient to have some compact method of indicating them.
The following are the abbreviations which will be employed in this essay.

(1.) The vector quantity whose components are A, A,, A,, will be written A in
clarendon type, while its magnitude without regard to direction will be denoted by A

(2.) The scalar quantity AB cos 0 =A,B, + A,B, + A;B;, where 0 is the anglo
between A and B, is called the Scalar Product of A and B, and is denoted by SAB.
Of course SAB = SBA. If A and B are parallel and in the same sense, SAB = AB
simply. If they are perpendicular to each other, SAB = 0.

(3.) The vector C, whose components are

C, = AB; — A;B, C, = A;B, — A\B; oA =’A182 - AzBl’

is called the Vector Product of A and B, and is denoted by C = VAB. If 6 be the
angle between A and B, then C = AB sin 6. Moreover, € is perpendicular to both
A and B, and its positive direction is such that right-handed rotation about € carries
A to B. It is plain that VAB = — VBA, and that if A and B are parallel, then
VAB = 0.

(4.) If D= VAB, then VCVAB stands for VCD. By working out the three
components of VCD, it is easily found that

VCVAB = ASBC — BSCA.

(5.) If D= VAB, then SCVAB stands for SCD.
av dv 4y
dr’ dy’ dz
quantity, is called the Slope of ¥ and is denoted by A = V¥. The vector A points
in the direction in which ¥ increases most rapidly, and is normal to the surface
¥ = constant. : :

(7.) The value of the surface integral of the normal component (reckoned outwards)
of a vector A, when applied to any infinitesimal closed surface, is

(6.) The vector A, whose components are where ¥ is any scalar

TdA, aA
+ 3

dx dz

per unit volume of the enclosed space. This is called the Divergence of A, and will
be denoted by div A, It is a scalar quantity.
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(8.) The vector B, whose components are the values per unit of area of the line
integrals of the vector A taken in right-handed directions round three infinitesimal
areas in planes perpendicular to x, ¥, 2, is called the Curl of A, and is denoted by
B = curl A, TIts compenents are

b p A _dA A A,
T oy dz’ 27Tz dz’ 8T dv  dy’

The positive direction of the integration and the positive direction of B are related in
the same way as the rotation and translation of a right-handed screw working in a
fixed nut.

(9). From the definition it is plain that div curl A = 0.

(10). When any vector A changes with the time, the vector %, or A, denotes that

vector which would have to be compounded with the vector A at any instant in
order to obtain the new value which A has after unit time, if the change is uniform.

Its components are of course
dA, A, dA,
i S T
dt dt dt

Mr. HeAVISIDE has given a very useful chapter on the elementary parts of Vector
Algebra and Analysis in vol. 1 of his ‘ Electromagnetic Theory.” I have followed
his notation with the exception of writing the scalar product SAB instead of AB
simply. But T gather that he would not object to this change.* An account of
vector analysis on the same lines has also been given by Dr. A. FopprL.t

Statement of Principles.

3. In my investigation I shall follow MAXWELL'S theory, but shall adopt the
method, employed by Heavisipe, Herrz, and others, of stating the fundamental
equations in terms of the electric and magnetic forces. Quantities of the nature of
potentials will be introduced during the course of the work, but this will be done
simply to facilitate the calculations.

" The four principal quantities to be dealt with ave: (1) the electric force E, (2) the
electric displacement D, (3) the magnetic force H, and (4) the magnetic induction B.
Since the medium is supposed to be homogeneous and isotropic, we have the relations

1 o | . ‘
b= lRE. ),
B = pH e e e e e e e (2),

* < Hleetromagnetic Theory,” vol. 1, p. 304, also ¢ Electrical Papers,’ vol. 2, p. 528.
1 ¢ Einfithrung in die Maxwell’'sche Theorie,” Leipzig, 1894.
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680 MR. G. F. C. SEARLE ON PROBLEMS IN ELECTRIC CONVECTION,

where K is the specific inductive capacity, and p the magnetic permeability of the
medium. The components of the electric force E parallel to the axes of z, y, and z
will be denoted by E,, E,, E; respectively. The same notation will also be applied
to the other quantities.

If E, D, H, B are all measured in the same system of units, then the principles to
be employed in the formation of the fundamental equations may be expressed as
follows :—(1). The line-integral of the magnetic force taken once round any closed
circuit fixed in space is equal to 47 times the total amount of electric current flowing
through the circuit, the positive directions of the current and of the integration
being related to each other in the same way as the traunslation and rotation of a
right-handed screw working in a fixed nut.

If H and C are the magnetic force and the electric current respectively, the set of
differential equations which expresses this result may be written

curl H=4#C . . . . . . . . . . (3)

Now it was an essential part of the theory, as MaAxwzLL left it, that the variation
of the electric displacement constitutes a true current whose amount and direction is

expressed by ZZt £ % But Professor G. F. Frrzgerarp® has shown that there

ought also to be mcluded the convection current pu, where p is the volume density of
electrification and w is its velocity. Since we are not concerned with conduction
currents we may leave them out of account. We have, then,

curlH—4W—13+4 u--K~—+47rpu. e e e (4).

(2.) The line-integral of the electric force taken once round any closed circuit fixed
in space is equal to menus the total amount of magnetic current through the cireuit,
the positive directions of the magnetic current and of the integration being related
as in (1).

There is no evidence for the existence of a magnetic conduction current, involving
a waste of energy. The only constituent of the magnetic current is that which arises

d { .
from the increase in the magnetic induction, viz., —g or w %—I when p is constant.
We might include a fictitious magnetic convection current u when 7 is the volume
density of magnetism, but for the present we omit it. The relation may thus be

expressed by

dB dH : ~
CU.I‘IE=—-—C—%~=-—}L% . B B . . s . . (D)e

Equations (4) and (5) must be satisfied at all points of the field. They at once
# ¢ B, A. Report,’ 1883, p. 404,
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lead to two important results, for if the divergence of each of these equations be
taken we have

div owrl H = 4r 5 (divD) 4 dwdiv(pn) . . . . . . (6}
divewl E= — C(divB) . . . . . . .. (D

But div curl H and div curl E both vanish identically, so that

:‘l% (divD)= —div(pw) . . . . . . . . (8)
d .. | |
| M(-l.; (dlv B) = O . N . 0 . . . . . . (9).

But div D = p, so that (8) becomes

dp/dt::-—-div(pu). e e e (10}.

Thus the density of electrification at any point can only be changed by the convec-
tion of electrification to or from the place. If a body has a charge ¢, no change in g
can be produced by the motion of other charged bodies or of magnets in its neigh-
bourhood. In the ordinary parts of the field p is zero initially, and therefore
continues zero. ;

From equation (9) we find that div B = constant. But we already know that
div B = 0. v v

If K and p are constant, then at all points of the field we have,

. 4
dvE=-F . . ... (1),
divH=0. . . . . . . . . . . (12).

Application to Steady Motion.

4. T shall now apply the principles already stated to the case of the steady motion
of any system through the field. The coordinates «, 7, z will be supposed measured
from a system of axes moving forwards with the system, without rotation. The
motion of the axes will introduce no difficulty, for the values of the line and surface
integrals are the same whether the axes are at rest or in motion.

MDCCCXCVI.—A. 4 s
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682 MR. G. F. C. SEARLE ON PROBLEMS IN ELECTRIC CONVECTION.

For the sake of greater generality, I shall first suppose that the velocity u of the
system has the components u,, u,, 5. Then since the motion is steady, we have

d d d d) )
dt_—<ul&;+ug@+u3(k.. Coe oo (13).

Taking the first of each of the two sets of equations represented by (5) and (4) and
substituting for d/dt, we have

dEy  dE, dH, JH, daH,

dy " @ M(h 7, T % a + U (14).
dHy _ dH, dE, A, dE,
dy ~ de K<ul dz + dy + dz +dmpu, o (15).

But div E = 47p/K and div H = 0. Using the latter, (14) becomes

IRy dE,
dy dz

il

dH, dH, dH, dH,
M <ug ay -+ g 7 "™ & Uy dz)

{ ; a '
=P {;l{g/— (Hyv, — Hyuy) — A (Hguy — Hl’%)}

if P= pVHu.
Hence

d 1
@(ES*PS)—é(Ez“Pz):O-’

The remaining two equations symbolised by (5) may be treated in the same
manner, and the resulting equations may be symbolised by

cur]l(E—pVH0)=0 . . . . . . . . (16)
Similarly from (4) we find
curl H+ KVEuw)=0 . . . . . . . . (17),

p disappearing from the equations.

These two equations take the place of (5) and (4) for the case of steady motion,
and must be satisfied throughout the field.

It follows from (16) and (17) that we can write

E—pVHOL=—9¥. . . . . . . . . (18),

H+KVEu=—v0. . . . . . . . . (19),

or
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av
El —-— M(ng'g - H3u2) = — —d;"- . . . B . . » (20),
aQ
HI + K (E2u3 -— E3’M2)== — ;Z—;: . . . . . . s (21),

together with four other equations of the same type. The quantities ¥ and Q are,
as we shall see, sufficient to determine the state of the field at every point, and must
be found in order to get a solution of any problem.

If we solve this set of six equations for the components of E and H, and remember
that Kuv® = 1, where v is the velocity of an electromagnetic disturbance through the
medium, we obtain

u? w\d¥Y | wu, dV | wu, dT [ dQ dQ
(=)= = (=) A G (e — ) e

’

Al g w\dQ | wuydQ | wu, dQ ar 4w ‘
III(I —/02 >~ —<1 —',Uz >dw + 7}2 dy + 2 dz —K uz 7 _usdy . (23)’

together with four similar equations.

By differentiating these equations and using divE = 47p/K and div H = 0, we
find

1 d d d\? 4o u?

N e — — — = — ——

v v2<u1dm+u2dy+u3dz>w K<1 qﬂ)p o (24),
1 d d d\?

90— (g L “ @ =

VO w2<u1dx+u9dy+u3dz>ﬂ—'0' Coe e (29).

These equations become much simpler when the motion takes place parallel to the
axis of . 'We then have u; = u, 4, = 4, = 0, and thus obtain

E, 5:-—%%,.... Coe o . (26),
E2<1—Zz>=—-%-yu%?. C (2D,
E3<1——~;§»>=—-‘%’—+W%. (@9,
H, == L @),
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684 MR. G. F. C. SEARLE ON PROBLEMS IN ELECTRIC CONVECTION.
H2<1-—§§>=-—% Ko 2 (30),
H3<1—%§>=;§:—KU% (3,

while the equations satisfied by ¥ and Q become

o) ) e
T )

The solution of any problem depends upon finding functions which satisfy (32) and
(33), and which fit in with the particular electromagnetic system which is supposed
to be moving. In all ordinary parts of the field we shall have p = 0, and thus

generally we have
2 dl\I}‘ ZZ\II dl\lf
<1-“> +E =0, . . L (34)

v? | da? da? di?

Our knowledge of functions which satisfy LAPLACE’s equation helps us to find
solutions, for if f(x, 7, 2) satisfies v’ = 0, it follows that f{x/s/1 — v?/v?, y, #}
satisfies (34). When in this manner values of ¥ and Q have been found, the values
of E and H are at once deduced from equations (26) to (31).

The quantity 1 — u?/1® occurs continually in the course of the work, and will
always be denoted by a. The motion will always be supposed to take place parallel
to the axis of «, unless it is otherwise stated.

Application of Vector Methods.

5. The solution of the six equations typified by (20) and (21) is tedious by ordinary
algebraical processes. But the solution is readily obtained by simple vector analysis,
and affords a good example of the great saving of labour effected by Mr. HrAvisipE's

methods. Thus, let F = — V¥ and R = — VQ, so that, by (18) and (19)
E—pVHu=F. . . . . . . . . . (35),
H4+ KVEa=R. . . . . . . . . . (36)

Then we have to find E and H in terms of ¥ and Q, or in terms of F and R.
Substituting from (86) in (85) we have
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E+ pVu(R — KVEu) = F,
where we have used
VHu = — VuH.
Thus, ‘

E+pVeR——VaVEa=F . . . . . . (37)

But,
VuVEu = ESuu — uSuE = «?*E — uSuE.
Again, by (35),
SuE — pSuVHu = SuF.

But VHu is at right angles to u (and also to H), and hence the “ scalar product ” of
u and VHu vanishes. Thus SuE = SuF, and therefore (37) becomes

E+uVuR — E— 7 Suf =F,
so that
/ N\ ‘ ‘
E(l -%):F—-%’;sul‘ —uVuR . . . . . . (38)
Similarly,
H(1—%)=R— " SuR + KVuF (39)
7)2/ ’02 . . . . . . .

The last pair of equations are easily seen to be equivalent to the set of six typified
by (22) and (23). ,

The forms which E and H assume when u is parallel to =z, are given in equations
(76) and (77) below. :

Motion of a Point-Charge.

6. The problem of a moving point-charge has been solved by Mr. HeAvisipE and
Professor J. J. TroMsoN, but as the solution will often be needed in other parts of
the work, it will be useful to put it down.

If, in the ordinary case of electrostatics, there is a point-charge ¢ at the origin, the
electrostatic potential is ¢ {#® + y* 4 22} ~%

Guided by this, let us put

sz{;ma +y9+z2}_§. Q=0

[~

Since these values satisfy equations (838), (34), they form the solution of some
problem in the case of motion. We have now to find what that problem is.
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From equations (26) to (81) we have at once

E_E_E_ A [ 2 217
il Ea AR (40).
2 -3
H =0 -2 EﬁwKuf}-{i-{-yu-z%} CoL L (41).
—z Y o o )

From (40) it follows that the lines of electric force are radii drawn from the origin.
From (41) it appears that the lines of magnetic force are circles having their centres
on the axis of @, and their planes perpendicular thereto. Since the electric force is
radial, there will be a definite amount of electric displacement outwards through any
closed surface, however small, which encloses the origin.  Hence the field given by
our solution can be produced by the motion of a definite point-charge at the origin.
If q is this charge, we can find the value of A corresponding to it from the
consideration that the surface integral of the normal electric displacement, taken over
any surface enclosing the origin, is equal to ¢. For the closed surface we may take an
infinite cylinder of radius ¢ coaxial with . Hence

fa

K (+=  27¢Acldzx
s A
ThusA:q‘,{“,sothat
e [@ o T
W’“T{"{a"’-q'*"J N C )8

and the values of the electric and magnetic forces now become

E_BE_ B _Q__{ﬁ I
Sk e a+y+4}.....,(44).
HIZO, wf:g*;”’_“-\/—%z{‘—; +y2+22} . . . B . (45).

These values are the same as those obtained by Heavisipe and J. J. TroMson.
If » denote the radius vector from the origin, and @ its inclination to the axis of z,
then we have for the resultant forces

T q (1 - v*v?)
E_I§o~9{1—sin26u2/q;2}g-'« Ce o .. (46).
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qusin 0 (1 — w?[v?)
7% {1 — sin? 6 u?[r?}?

H= (47).

From (46) we see that the electric force varies inversely as the square of the
distance for any given direction, but that for any given distance it gradually increases
as 0 increases from 0 to 37  As the speed increases the electric force tends to become
more and more concentrated about the plane through the origin at right angles to the
axis of 2. When u = v, there is no electric force except in that plane ; we have, in
fact, a plane electric wave moving forward at the speed of light.

The expression for H shows that at low speeds, where ©%/v® may be neglected in
comparison with unity, the magnetic force is the same as that attributed by AMpERE'S
formula to a current element of “moment” uq. By the moment of an element is
meant the product of its length by the strength of the current in it. When the
speed of light is attained, the magnetic force is confined to the plane yz, and the lines
of force are circles in that plane with their common centre at the origin.

Mr. HEAVISIDE has stated™ the result when u is greater than v, but Las not up to
the present (March 14, 1896) divulged the manner in which he has obtained the
solution in this case. I confine this paper to the case in which « is not greater than ».

As the charge moves along, the electric displacement at each point varies, giving
rise to a current, and I shall now investigate the form of the current lines in the case
under consideration. The currents evidently flow in planes drawn through the axis
of x, so that it will be sufficient to find the form of the current lines in the plane xy.

. K dE K dE .
The x and y components of the current at any point arve i %1- and e —df , or, since
the motion is steady, — i;u Ef and — 4}%7@2 Hence, it dy/dx refer to one of the

current lines, we have
&y _ a8, [dE,

de ~ do | de”
Performing the differentiations, we find that for points in the plane xy

Wo_ _Bay_ . 48),

do 2% — g

the solution of whieh is
ey =@+ . . . .0 L (49),
or in polar coordinates
¢ 8in?6

r = < ) >% . . . . . . . . . (50).

1— — sin*0
v

The form of the lines of flow is given by equation (49) or (50).

¥ ¢ Electrical Papers,” vol. 2, p. 516.
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‘When the motion is very slow, the equation becomes
= ¢ sin? 0,

the same as the equation to the lines of flow of a doublet, consisting of a “source” of
current and a “sink” of equal strength, placed infinitely near each other in an
infinite conducting medium. The currents flow along these curves, being ¢ closed”
by the convection current formed by the moving charge. At the speed of light the
currents are confined to the plane of yz, and then take the form of outward radial
currents in the front face of that plane and inward radial currents in the back face of

the plane.

Motion of o Line-Charge.

7. Mr. HEAVISIDE has obtained* the solution for the motion of a uniformly charged
straight line, both in its own line and also transversely, by integration of the result
for a point-charge,

The method I have employed for the point-charge can be easily applied to these
problems, when the line is infinite in length.

(1.) Motion in its own line. '

The line coincides with the axis of «, and is supposed to have a charge ¢ per unit
length. In the electrostatic problem the potential is — ¢ log (3* + 2%).

Hence a solution in the case of motion is given by

v=—Alog (¥ +7+) Q=0
From this, by equations (26) to (28),

— B _ B 24
El — O y — ?-—— o‘(l’[/2+ 22) . e . . . ° B . . . (51)-

The electric force is therefore everywhere perpendicular to the charged line, and
the resultant is given by

;:m» o . .‘. . ° . o (52).

To find A, integrate KE/4w over unit length of a cylinder of radius p coaxial with
the charged line, and equate the result to g. Thus

K 24 _ KA

I T a

q= 2mp.

* ¢ Electrical Papers,” vol. 2, p. 516.
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Hence
A=goc/K..........(53).

The state of the field is therefore given by the equations

E, =0 D
_ 2y
PTR@HE) . o o oo (54)
292
B = G )
H, =0 h
2quz
Ho=—20o b . o . .. ... (55
L
3—?/?’-}-2'2 J

The resultant electric force is perpendicular to the charged line. Its value is
E:2Q/Kp e e e e e .o (56),

the same as if the charge were at rest.
The resultant magnetic force is in circles round the wire. Its value is

He=2qup . . . « « « « . . . (57),

the same as that due to a current qu. Thus the motion introduces a magnetic force
without affecting the electric force at all.

(2.) Motion perpendicular to its own line.

Let the charged line coincide with the axis of z. The potential in the electro-
static problem is — ¢ log (#* 4+ %°). Hence a solution in the case of motion is
given by

\I'-::.—Alog<%i+y2> 0 =0.

From this, by equations (26) to (28),

e

Eg=0 . . . . . . (58).

|

X ;_‘C’j

@ =
139

BN

P

AN
R
P
8
%
+|
<=
FS)
SN

The Jines of electric force are thus everywhere straight and at right angles to the
MDCCCXCVL—A. 4T
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690 MR. G. F. C. SEARLE ON PROBLEMS IN ELECTRIC CONVECTION.

charged line. To find A we must equate to ¢ the surface integral of the normal
electric displacement taken over unit length of a cylinder of any form, enclosing the
charged line, the generating lines of the cylinder and the charged lines being parallel.
The most convenient surface is that formed by the two infinite planes « = o and

® = — o respectively.
Thus :
— 4 K 2Aady KA
S . e
47T§ a <‘a__ 4_ y2> v/a
0 [~2
or
_ gV
A = %
Hence
N _ Eg . 2q

=t E,=0. . . . (59).
;'2 ) 3
? Y K <Z + .1/9>

Equations (29) to (31) give us

' 2qu
H=H=0 H=—73"<. . . . . (60)

If p is written for 2® 4 4%, and @ is measured from the axis of 2z in the plane xy,
the resultant electric and magnetic forces may be written

29\ ,
E = ( 22 . . B B R . . . . (61),
Kp \1 — o s 9)
2 asin
A )
p<1 — —, sin? ¢9>

so that the forces vary inversely as the distance from the charged line. When
w = v, the electric force, and also the magnetic force, is confined to the plane yz just
as in the case of the point-charge.

Mechanical Force due to Electromagnetic Action.

- 8. The mechanical force experienced by any very small portion of the electro-

magnetic medium, when reckoned per unit of volume, has the following constituents :-—

(1.) A force Ep, where E is the electric force and p the volume density of positive
electrification.
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(2.) A force Hr, where H is the magnetic force and 7 the volume-density of positive
imaginary magnetic matter.

These two forces follow from the ordinary laws of electrostatics and magnetism.

(3.) A force VCB (Electromagnetic force), where € is the electric current density
and B the magnetic induction. As far as I know no satisfactory proof of the formula
has been given. MAXWELL obtains this formula in § 602, vol. 2, of his ¢ Electricity
and Magnetism,” but he assumes (practically) the result he is going to obtain, for he
assumes that the force “corresponding to the element ds,” actually acts on ds. The
formula gives absolutely correct results when applied to find the force experienced by
a complete circuit, and has besides the merit of simplicity.

The expression can be deduced from MAXWELL'S expression for the magnetic
stresses in the field, but apart from the harmony which results when all the forces
due to magnetic actions can be obtained from a single formula, no confirmation of its
correctness is obtained, for the Maxwell stress was constructed so as to give the
force VCB.

(4.) A force — VGD (Magneto-electric force) where G is the rate of increase of the
magnetic induction, or the “magnetic current,” and D is the electric displacement.
This force, as Mr. HrAVISIDE has remarked, can be deduced from the Maxwell
electric stress provided that we assume that the stress is the same whether the
electric force has a potential or not. The force has never been experimentally
observed.

Mechanical Stress between Two Systems.

-9. We shall now suppose the complete system to be made up of two separate systems
of sources of disturbance, and will write down the force experienced by one of
these systems due to the other. Since the sum of any number of solutions of the
differential equations of the electromagnetic field is also a solution, it follows that
if one of the systems of sources of disturbance gives rise by itself to a field charac-
terized by E', H and the other system gives rise by itself to the field E”, H” and
if E, H denote the field when both systems are present, then

E=FE4E H=H -4 H"

The force experienced by any portion of the medium per unit of volume is
therefore

(EI+E//) (pl+p'/)+(H'+H//) (T/_I_T/l)_l_v (C/+C'/) (B/+B//)_V(G/+G//) (DI+D,/).
If the force per unit volume which is due to the mutual action of the two systems
be denoted by P, then '
P=Ep + E'p + H7 + H'7 + VOB’ + VOB — V&Y — V&'D' . (63).
4 T2
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692 MR. G. F. C. SEARLE ON PROBLEMS IN ELECTRIC CONVECTION.

Mechanical Force Experienced by a Moving Point-Charge.

10. The first case I shall consider will be that of the motion of a point-charge, the
mount of the charge being ¢. I shall deduce the mechanical force experienced
by the charge.

Since the charge is supposed to be concentrated into an infinitely small volume,
and since the values of the quantities E', H', ... belonging to the system which is
acting upon ¢, do not in general change at infinitely rapid rates from one point
of space to the other, we may regard those values as constant throughout the space
occupied by ¢. We suppose, of course, also that none of the charges, electric or
magnetic, due to the influencing system are within the small volume occupied by gq.
Thus p’ =0 and 7 = 0. Again, since by equation (45) the magnetic force H”, and,
therefore also the magnetic induction B”, due to the charge g, is in circles round the axis
of motion of g, it follows that the volume-integrals of B”|, B”,, B";, taken throughout
any portion of space bounded by a surface of revolution having the axis of motion for
its axis, are all zero. Thus, since in general, ¢’ is not infinite, the volume-integrals
of the three components of VC'B” taken throughout the space bounded by an
infinitely small surface of revolution enclosing ¢ and having the axis of motion for its
axis of figure, are all zero. If the surface of revolution is symmetrical fore and aft
of the charge, then the volume-integrals of the components of VG'D” all vanish
because D" is radial. By supposition 7 vanishes also.

Thus if P now stand for the force experienced by the small region (of the form just
mentioned) surrounding ¢, we have simply

P=[Ep'do + [veBdo — Ve Ddw

where the integrations are to be understood vectorially, and dw denotes an element of

volume.
On account of the constancy of B/, B', and D’ within the space considered, we have

P=F(o'do+V ( [0"dm> B —V qG”dw) . . . . . (64).

The value of | p"dw is g.

Since B” is in circles about the axis of motion & is also in similar circles. Hence
[6"dw vanishes when applied to a region bounded by a surface of revolution. Thus
the last term vanishes.

In finding the value of [C”dw, the form of the bounding surface is important. If]
for instance, we take a small sphere whose centre is at g, its polar axis coinciding
with the axis of motion, then there is a positive w@-component of the displacement
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current at points near the axis, but a negative x-component at points near the
equatorial plane. The volume-integral is therefore less than it would be in a more
suitably chosen space. If we take a very small circular eylinder, whose axis is in
the axis of motion and whose length is very great compared with its radius, we
shall clearly get rid of the “ back ” current. The volume-integral of the z-component
of the current in such a cylinder can best be calculated by means of the theorem
that the line-integral of the magnetic force round any circuit is 47 times the current
flowing through any surface bounded by the circuit.

Let the charge ¢ be in motion at speed u along the axis of @. Then by (45) the
resultant magnetic force at the point x, p is

2 -3

\/ a | «
where p* = y* 4 2%
The total z-current flowing across the section of the cylinder of radius p made by
the plane & = «, is therefore

1 qup [ 2}“
47r.2ﬂp.\/;{a+p' .

The volume-integral, when 2/ is the length of the cylinder, is therefore

qup® o ds U e b
2\/&5 <L + p2>é TP ap
-\

When p; is infinitely small compared with / we have simply

[ C) dw = qu,

as we should have expected.
The volume integrals of the other components of C” are clearly zero, so that

]'02" do = 0, [03" do = 0.

If, now, F denote the force per unit charge, we see from (64) that its value is*®

F=E+VuB. . . . . . . . . . (65)

and its components are

% The accents, being no longer needed, have been omitted. The quantities E and B are the values
which would obtain at any point if the unit charge, which has been supposed to be placed there, were

removed.
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F,=E l
¥, = E, — uB, G . (66),
B, = E, + uBzJ

since u is parallel to the axis of z.
Writing the equations in terms of II instead of B we have

=B pVelE., . . o 0 00 (67),
=K, F,=E,—pull, ¥, =L, + pull, . .. (68).

Inserting the values of I and H in terms of ¥ and Q from equations (26) to (31),
we find at once

av av - aw
F] —_— ZZQ—} 3 Fo —_— EJ s E3 — (lz (69),
or,

F=—=V¥ . . . . . . . . . . (70

Thus it appears that though there is no proper potential from which the electric
force can be derived, yet there is a potential for the mechanical force experienced by
a moving charge. The electric force is really the mechanical force experienced by a
unit charge at 7est, while the force — V¥ is the mechanical force experienced by a
unit charge moving at the same speed as the system which gives rise to E and H.

Mechanical Force on a Moving Pole.

11. In exactly the same manner we should find that if the mechanical force
experienced by a unit magnetic pole moving with the system be denoted by R, then,

B=H—47VuD=H-—-KVuE. . . . . . . (71),
so that its components are ”

Inserting the values of E and H in terms of ¥ and & from equations (26) to (31),
we find
L _ a0 _ _ao
Rl e -;,_a'; 5 1\12 — d(]/ ) R3 o (Zg . . . . (73),
or
BR=-=vVvVQ . . . . . . . . .. (7/1).
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Thus, in this case also, although there is no true magnetic potential, still the
mechanical force on a moving pole has a potential.

Mechanical Force on o Moving Electric Current.
12. If ¢ denote the current, the force on it, per unit length is simply

VeB or wVeH . . . . . .. (75).

Values of E and H in terms of F and R.

13. The electric and magnetic forces E and H can now be at once expressed in
terms of the mechanical forces F and R experienced by a moving unit electric charge
and by a moving unit magnetic pole respectively. For, since F= —V¥ and B= —VQ,
equations (26) to (31) become

B, =F, )
E2=§E‘2+%&R3},. R ()
By =- 1, — 2R,

J
o, =R, )
Hy=R— "y | (77).
}I3=%R'3+%&F2

Meaning of curl F = 0 and curl R = 0.

14. We now perceive the true meaning of the two equations (16) and (17), viz.,—
curl (B — pVHu) =0, curl (H+ KVEu)=0,

or, as we may now write them, :
curl F = 0, curl R == 0.

They simply express the fact that the work done in taking a unit quantity of either
electricity or magnetism round any closed path is zero, the path itself moving forward
with the velocity u which is common to the whole system. This implies that F and
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R are derivable from potential functions and that two functions, ¥ and Q can be

found such that
F=-—VYVY, R= - VQ.

Mr. HEAvVISIDE® has shown by a method, of which mine (in § 4) is only a translation
into Cartesian symbols, that the two vectors E — uVHu and H 4 KVEu are derivable
from potential functions, and has deduced from them the values of E and H in terms
of what I have denoted by ¥ and Q. And he has shown that if we take an
eolotropic medium in which the specific inductive capacities and magnetic permea-
bilities parallel to the three axes are

and suppose that the same functions ¥ and © now represent the electric and
magnetic potentials respectively, then the electric displacement at any point in the
electrostatic problem is in the same direction as, and K /4 times as great as, the electric
force E at the same point in the problem of a moving charged body. Similarly the
magnetic induction in the statical problem is p times the magnetic force in the
problem of a moving magnet. The analogy breaks down however when V¥ and VQ
exist together. It is obvious that the electric and magnetic forces in the statical
problems are identical with F and R in the problem of motion, for in both cases they
are the negative ‘“slopes” of ¥ and Q. But I believe that I have not been antici-
pated in giving the true explantion of the meaning of the vectors F and R.

Equilibrium Conditions.

15. I shall now consider the circumstances of a charged surface in motion, and
shall begin by stating the nature of the surface upon which the charge is supposed to
be deposited. The equations employed are those relating to the free ether, and
would not necessarily apply to the interior of a mass of copper or other conducting
substance. I do not know what happens at the surface, or at points in the interior,
of a lump of copper when it is caused to move rapidly through the ether. The
equations for a conductor at rest or in motion at a speed very small compared with
that of light are well known, but very little is known for certain as to their form
in rapidly moving masses of matter. The surface then is supposed to be formed of
a thin film of some non-conducting substance whose electric and magnetic properties
do not differ appreciably from those of free ether, and the charge is supposed to be
deposited upon this surface.

* ¢ Electromagnetic Theory,” pp. 271, 276. ¢ Electrical Papers,’ vol. 2, p. 499, and foot-note to p. 514.
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In order to understand the conditions of equilibrium which apply to such a surface,
it is necessary to make a careful distinction between the mechanical force experienced
by any portion of the charged surface, and the tendency to convection experienced
by the charge upon that portion.

Now, according to the statement of § 8, the mechanical force per unit volume, at
any point where the magnetic density 7 is zervo, is given by

P = Ep + VCB — VGD,
where € includes both the convection and the displacement currents so that

K dE

C=m+ 7

If we take unit area of the charged surfuce and suppose it enclosed by a very short
cylinder whose ends are parallel and infinitely close to the tangent plane to the
surface, and integrate P throughout the cylinder, we shall obtain the force experienced
by unit area of the charged surface. An equivalent method is to find the difference
in the Maxwell stress in the medium on the two sides of the surface.

But when we consider the charge itself, we have to ask whether all the constituents
of P are effective in tending to make the charge move relatively to the surface.
When calculating, in § 10, the force experienced by a point-charge in motion, we were
able to disregard the term — VGD because the *magnetic current” G was in circles
about the axis of motion, and thus the force on a univ charge was reduced to
E + pVuH. But generally at a moving charged surface there will be a discontinuity
in the magnetic induction and in consequence a surface ““magnetic current,” and it
would seem at first sight as if this ought to bz taken account of. But although the
electric displacement D acts upon the magnetic current G, giving rise to the mechanical
force — V@D, at right angles to both G and D, still there will be no change produced
in the amount or distribution of the ““magnetic current.” And if there is no change
in the ¢ magnetic current,” there can be none in the magnetic induction whose
variations constitute that magnetic current. And still less will there be any change
in what causes the magnetic induction, viz., the displacement and convection currents.
We need not consider here the magnetic force which may arise from magnets or
electric currents flowing in conductors, and which would be represented in terms of
the differential coeflicients of Q, for there will be no discontinuities in this part of the
magnetic force, since we have supposed that at all points on the surface 7 is zero
and that there are no surface conduction currents. The action of the electric
displacement upon this surface “magnetic current ” will therefore avail nothing in
producing convection of the charge from one part of the surface to another. The
direct effect of the electric force upon the charge is taken account of in the first
term of P, viz, the term Fp. Now we have already seen in § 3 that the only

MDCCCXCVI,—A. 4 U
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698 MR. G. F. C. SEARLE ON PROBLEMS IN ELECTRIC CONVECTION.

way in which alterations in the electrical distribution can be produced, when there
is no conduction, is by convection, and hence since the term — VGD can produce no
changes in the electrical distribution, it must be omitted in estimating the tendency
to convection. This is only what we might expect if we notice that the ‘ magnetic
current ” is not a necessary accompaniment of a moving charged surface. For in
the case of an infinite cylinder uniformly charged and in motion along its length
there are no “maguetic currents ” at all, since there is no change in the magnetic
induction along any line parallel to the length of the cylinder.

An example of a somewhat similar kind occurs when an electric current flows
through a conductor in a magnetic field. The magnetic field gives rise to a
mechanical force which is experienced by the conductor, but there is no change
produced in either the strength of the current or in its distribution, provided, at
least, that the conductor is not of bismuth (when its resistance would be altered by
the magnetic field) and that the ¢ Hall effect  is disregarded.

The convection current pu is a true part of the electric current. The substance
upon which the charge is deposited experiences, therefore, the force pVuB per unit
volume, or wVuH per unit of charge. But the charge must move when the sub-
stance conveying it moves, and thus we may regard the charge as experiencing the
force. Hence the term must be included in estimating the tendency to convection.
In contrast to the “magnetic current,” the convection current pu depends only upon p
and u, and is not dependent upon the manner in which p is distributed.

If we use F to denote the “tendency to convection,” we have finally

F=E + pVul.

But E -- pVHu == — V¥, so that F = — Vv,

Since ¥ is the potential whose “slope” is the * tendency to convection,” it will
be convenient to call ¥ the “electric convection potential.” In the same way Q may
be called the “ magnetic convection potential.”

Equalibroum Surfaces.

16. Since the ¢ tendency to convection ” experienced by a unit moving charge is
given by F == — V¥, it follows at once that ¥ is everywhere perpendicular to the
surface ¥ = constant. The surface ¥ = constant may therefore be termed an
equilibrium surface, for a small concentrated charge which is constrained to remain
upon the surface will not tend to move about upon it. And the result of § 15 shows
us that this statement remains true for each part of the charge, even when a charge
is distributed over the whole of the surface.

Now consider what happens in the case of a charged surface in motion when the
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charge has acquired an equilibrium distribution, it being supposed that there are no
charges within the surface itself. Since the charge is in equilibrium the tendency
to convection ” F must be everywhere perpendicular to the surface. This can only
be when ¥ is constant all over the surface. From this I shall now show that, when
the surface is closed, ¥ is constant throughont the interior of the surface, and that
consequently F is zero there. If Q = 0 this last result implies that both E and H
vanish also, as may be seen from equations (76) and (77).

Let ¥ = f(x, vy, 2) be the value of the “ electric convection potential ” at any point
outside the charged surface S, and ¥ = f” («, v, z) its value at any point inside S.
The surface S is by supposition an equilibrium surface, so that ¥ is constant at all
points on it, and consequently f(x, y, 2) = f' (z, v, 2) = ¢, a constant, when x, ¥, 2
lies on S. If there are no charges in the interior of S then f’ satisfies the equation

A e |
cap Fapt s =0 o (78)

Now, corresponding to the point x, y, z take in a new system of coordinates, the
point & %, { such that

E=u, n=yve, (=wa

Then, corresponding to the surface S, we shall have a new surface = whose equation
in terms of & », {is’

b (& D= 0V Yv/a) =

If we have also ¢ (&, {) =f' (€ n/v 2 {/v/ @), then the values of f and j’ at
any point x, ¥, z are the same as those of ¢ and ¢’ at the point & %, { Now, since

at all internal points f” satisfies (78), it follows that at all points internal to =, ¢’
satisfies

e N L A P
d‘fz + dn? + ag? - vz‘f’ = 0.

Moreover ¢’ is constant at all points on the surface 3. Hence ¢’ is the value
of the electrostatic potential due to a distribution of electricity at rest, such that
the surface 3 is an equipotential surface, and such that there are no charges within
it. But in this case we know that ¢’ is constant at all internal points. It follows,
therefore, that f” is constant at all points internal to the surface S. Hence, when a
charged surface is in motion, and the charge has acquired an equilibrium distribution,
the ““convection potential” is constant throughout the interior of the surface. If
there are no sources of magnetic disturbance in the field, so that & = 0, the constancy
of ¥ implies that both the electric and the magnetic forces vanish at all points internal
to the charged surface. Thus if the only source of disturbance is the charged surface
itself, the electric and magnetic forces due to it are entirely on the outside of the

4 U2
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700 MR. G. F. C. SEARLE ON PROBLEMS IN ELECTRIC CONVECTION.

surface. There is no disturbance within it. The same is true when there are other
electrical disturbances outside the surface, and the surface is still an cquilibrium
surface for the whole system.

But if there are sources of magnetic disturbance in the neighbourhood of the
surface, and ¥ is still constant over the surface, it will also be constant throughout
the interior of the surface. Yet the electric and magnetic forces do not now vanish
at internal points, for parts of these forces are derived from the ““ magnetic convection
potential” Q. Since W is constant inside the surface, it follows from equations
(26) to (31) that the field there is given by

dQ
E, =o. H= =%

wi df) . 1 dQ

4 — FA . [ g— F
E,= « dz 1, a dy
pie dQ . 1 dQ

L‘ o= e e e T, = == — —-—
F‘; a dy ! [‘; a  dz

But though there is now both electric and magnetic force inside the surface there
is no mechanical force on a small moving charge since F is zero because V¥ 1s
constant. Outside the surface the field is the resultant of the fields due, the one
to @ and the other to .

We have already seen that when @ =0 there 1s neither electric nor magnetic
force inside an equilibrinm surface. The lines of magnetic force just outside the
surface must be tangential to it since there is no magnetic force inside the surface
and no distribution of magnetism upon it. The lines of magnetic force are also in
planes perpendicular to the axis of « since IT) = 0 when & = 0. Hence the lines of
magnetic force ou the surface itself are the lines in which the surface is cut by planes
perpendicular to the axis of x.

It is easy to show by analysis that throughout the field, as long as @ = 0, the
lines of magnetic force are given by the sections of the surfaces ¥ = constant by the
planes & = constant.

For by (29), (30), and (31), when Q = 0,

Ku 4\ Ku &

H =0 H,=" =— " “=

~ « de a dy )
Hence, if dy/dz refer to one of the lines of force,

dy _ 10

v [
= T H, T dz/ dy

But at all points of the section of the surface ¥ = ¢ made by the plane i« = ¢, we
have y and z connected by the relation ¥ = ¢, while, of course, x is constant.
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Heuce,
v, AVdy
dx " dy dz T
or
dy _ ¥ [4¥
dz dz/ dy '

Thus the lines of magnetic force are given by the lines defined by ¥ =¢, x = ¢/,

A A

SOCIETY

OF

A

OF

where ¢ and ¢’ are variable paramecters.
Electrical Distribution on an Equalibriwm Swrface.

17. The surface density at any point of a charged surface on which the electricity
is in equilibrium is found from the fact that the surface-integral of the normal electric
displacement taken over any closed surface is equal to the quantity of electricity
within that surface. llence, if E, denote the electric force normal to the surface,
and o the surface density, we have, just as in electrostatics, when there are no
charges inside the surface,

1
;;;KE,,:':O' e e e e e e e e e (79),
since by § 16 the electric force vanishes inside the surface.

The above statement refers to the case in which Q = 0.

When Q does not vanish, we have instead,

1 . - . .

g K {E, (outside) — E, (inside)} =0o. . . . . . (80),
where the clectric forces arc both reckoned in the same direction, 4.c., along the
outward drawn normal.

Since no sources of magnetic disturbance reside on the surface, the part of E which
is derived from Q is unchanged in passing through the surface, and the difference
between the normal electric forces inside and outside may be computed from ¥ alone.
Since ¥ is constant throughout the interior of the surface, the part of E due to it
vanishes inside the surface. ‘

Hence, if 1, m, u be the dirvection cosines of the outward normal to the surface, we
have by (26) to (28),

K 1,d¥ m AW n AV
o= —" {4 L PO . (81).
4 | do a dy a dz ’
whether VQ vanish or not.

Since F = — V¥ and is normal to the surface we have

K/, m? n? K 2? .
o= (P4+~—~4+ " VF=—(1—"_1F\F . . . . 2).
47r< +a+a> 47ra< ? (8 )
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But by (76) when VQ vanishes,

E=F, E=_F =—F
so that
E="yI=PFI—a)F . . . .. .. (83)
Hence
L T

5
[October 23, 1896.
The direction cosines of E are

al

VI—F({1 -

m
VI—PA =&  J1-p(1=d&)

We have now obtained the value of E as far as it depends upon the moving
electric charges. If VQ does not vanish we have simply to add on the electric force
whose components are

— — _peda _ p dQ
E, =0, E, = a dz’ E?’—ady'

The magnetic force near a moving charged surface is compounded of two parts, one
due to ¥, the other due to Q,and these are quite independent. - I shall now calculate
the value of H when VQ is zero. If in any case VQ is not zero, we have simply to
add on the part of H which is due to Q. | :

Now when VQ vanishes (and therefore also R) equations (77) give

H =0, H=—""F, H="1"F
so that
H=""VEFFF=""FVI=t . . . . . (85)
But making use of (83) and (84) we have
_ VT=7 . VIi=1
H=K \/l—lg‘(ﬁ)E_-équo-l—__?jl—g' coe e (86).

Now when R =0 we have by (39) that H is perpendicular to both u and F.
Again, by (36) H is perpendicular to E and u. Hence E, F, and u are co-planar,
and since F has already been proved to be normal to the surface, E lies in the plane
containing the direction of motion and the normal to the surface.
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Let the angle between E and F be 6, that between F and u ¢, and that between E
and u ¢. Then the following relations will be found useful :—

Fig. 1.

y]
_F

S
/Y
By § )
5
i SuE = SuF
so that

E cos ¢ = F cos ¢

Again by (38) after multiplying vectorially by u

aVEu = VFu

so that

Esin</>=—j: F sin o,
whence
. acosy o sin
COS('b-\/uz(BOS‘"«Ir+Singwlr’ Sm("[)_‘\/a”cos‘zxp-;-sinhp' _
But by (36) since R = 0

H =KVuE

so that
H = KuEsin ¢ = l—iﬁbF sin .

Lastly by (38) after multiplying vectorially by E

VEF — -vl;VEu. SuF == 0
so that

. w
sin 0 = & sin ¢ cos i

Since 0 = ¢ — i this is the same as

. u? .
o sin § = 5 oos ¢ sin .
Also
a cos® Y 4 sin® 4

cos 0 = cos (¢ — ) = Y

v'a® cos? Y + sin® A’

The expressions for E and H hold good for a point just outside any equilibrium
surface. But they plainly hold good for any point between a pair of parallel plates
bearing complementary charges.
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Mechanical Force on a Charged Surface.

18. The mechanical force experienced by any portion of a charged surface may be
found by considering the difference of the Maxwell stress on the two sides of the
surface. If the surface is an equilibrium surface, and if VQ is zero, there is neither
electric nor magnetic force inside the surface, and consequently the Maxwell stress on
the inner side vanishes. Let E and H be the electric and magnetic forces at a point
just outside the surface. Then the Maxwell stress gives a normal outward force

%;E; (cos® — sin? 6) — ’;}E
per unit area of the surface. Note that H lies in the tangent plane.

There is also a tangential force in the plane containing E, u, and the normal, and it

acts towards the E side of F'; its amount per unit of area is
KE?

4 cos d sin 6.

The force experienced by the medium per unit volume is, by § 8, or by § 15,

P=Ep+pVuB+ - VIEB — VGD,

The application of this formula to calculate the force experienced by the charged
surface affords a good example of electromagnetic principles. We shall suppose that
the electricity is uniformly distributed through a layer of small but finite thickness, a,

Fig. 2.

the volume-density being p, so that po = .  Now, if there is no disturbance on the
side of the layer away from which it is moving, it follows that if E, and H, are the
electric and magnetic forces at a point on the front of the layer, then the forces at any
point O whose distance from the back of the layer is », are

7 T
E=E H=_H,
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At the fixed point through which O is passing, the forces are increasing at the
rates '
E_

dat

* dH %
— -, cos YE, = 7, cos yH,.

The direction of dE/dt is along OE, and that of dH/d¢ is along H, t.e., per-
pendicular to the plane of the paper and towards the reader. Thus Ep acts along

OE, and has the value pEgr/a ; pVuB acts along OQ in the plane of the paper, and
Ky
47 dt
value — Kpu cos yEHyr/4ma®.  The direction of G = udH/d¢ is outwards from the
paper, so that VGD acts along OM at right angles to OE. The value of VGD is
— Kpuu cos yE Hr/dma’.

Integrating these forces with regard to », and remembering that pa = o, we find
for the normal pull

has the value pupHgr/o ; B acts along OL at right angles to OE, and has the

N =1Ejo cos 0 — % oput, sin y — KpuE H, sin 0 cos ¢/4m.

Making use of o = KE; cos 0/47 and employing the relations given in § 17 between
E, H, 0, ¢, and ¢, and noting that ¢ 4+ 0 = ¢ the expression easily reduces to

N = - (cos? @ — sin® 0) — -

This is identical with the result obtained from the Maxwell stress.

In finding the tangential stress, we know that E 4 VuB is normal to the surface,
so that the first two terms may be disregarded. For the tangential stress we thus
obtain

T = Kpuw cos yE H, cos /47 = Ku?E? cos ¢ cos 0 sin p/4mwr?
KE? .
= ——-cos 0 sin 6.
4

This acts on the E side of F, and is therefore identical in direction and magnitude

with the force derived from the Maxwell stress.

Normal Pull—If we express H in terms of E and i, and @ in terms of v, and
write B for u?/v?, we shall find that

KE? 2% cost r — cos? (B + B*) + 1 — B
8 1= @8 — ) cost o ’

= normal pull =

or in terms of o

N __ 2wa® 237 costyp — cos® Y (B + BF) + 1 — B
K (1 — Bcosty)
MDCCCXCVI.—A. 4 x
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When ¢y = 0 so that the normal is along the direction of motion, the normal
pull is KE?*/87, or 2m¢?/K, and is independent of 8. ,

When = #/2, so that the tangent plane is parallel to the direction ol motion,
the normal pull is KE? (1 — «?*/+*)/87, vanishing when the speed of light is reached,
t.e., when u = v. _

Now for all real values of 8 the denominator is pdSitive. Thus, if 8 is large
enough, the normal pull, N, may be negaiive over a certain range of values of .
For a given value of B, as ¢ increases from 0 to 7/2, N changes from positive
to negative and from negative to positive again as ¥ passes through the values
given by _

2B cost  —cos’ Y (B+ B+ 1 — B =0,

or

The value of 4 given by this is not real till
B+ 108 —7 =0,

Be, till B= — 5 4 +/32 = 6568542 (B must be positive).

The value of ¢ corresponding to this value of 8 is 87° 25" 45”4, Thus, if an
electrified sphere is in motion along its polar axis, the normal pull is positive all over
it till B = 6568542, or u/v = *810465. At this speed the pull vanishes at the points
whose co-latitude is 37° 25" 45”4, As the speed increases, there are two lines
of latitude along which the pull vanishes, and between which the pull is negative.
If ¢, denote the value ¢ where the pull changes from positive to negative, and s, the
value where it changes from negative to positive, then the values of iy and i, are
given in the following table :—

B. ufv. Yy Yy |
6568542 ‘810465 : 37 25 454 37 25 454
7 8367 22 13 53 18
75 ‘8660 15 41 60 42
‘8 8944 11 6 66 15
85 9220 v 42 71 2
‘9 -9487 4 42 75 33
‘95 ‘ 9747 2 8 80 25
1-:00 1-00 00 90 0

When % = ¢, we have already seen that N vanishes when i = #/2, so that there
is then no real change from a negative value to a positive one. Now when =0,
N is always positive whatever the value of u/v; thus when % == v, N changes from
positive to negative for an infinitely small increase in
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‘When % = » we have

KE?
N=-— i cos®

or, in terms of o, since by § 17 cos 0 = sin ¢ when v = v,
— e
N=— K cot® .

Thus apparently when ¢y =10, N = — o. On the other hand, when ¢ was put
zero before u was made equal to », we found N = 270*/K. The reason of the
discrepancy appears to be as follows :—If the surface is one of two parallel planes of
absolutely infinite extent, and the motion is along the normul, the only possible
direction of E is also along the normal. But if the surfaces are not infinite, e.g., a pair
of circular parallel plates, at all ordinary points there is a definite direction, at right
angles to the motion, along which the electric force must lie. And if the charge is
supposed confined to an infinitely thin layer there will consequently be a finite
amount of displacement through an infinitely small area, thus producing infinite
electric force. 'When, as in the cuse of a moving ellipsoid, we are able to take
a proper account of the distribution the discrepancy disappears.
Tangential Pull.—The tangential force per unit area is

KE? . KE? »? | wcost + sin?
T=-—cosfsinf =———siny cosy — ,,\P — O\P
4 »* a? cos? Yo + sin®

4 ’
or, in terms of o,
4o v sin cos

K %? acos?  + sin® "

T =

Whent,[/::O,orWhent[J::—Z)i, T=0.

Aaro?
When v =», T = —%’—cot Y.

There is thus a discrepancy when ¢y = 0 and v = v». The explanation is the same
as for the normal pull.

Stress between a Pawr of Moving Charges.

19. The theory of the mechanical force experienced by a moving charged particle
can be readily applied to calculate the stress between two charges which are both
moving parallel to  with velocity u. Let there be a charge ¢’ at the origin and a
charge ¢ at the point «, y, 2. Then by (43) the value of the “convection potential”
due to ¢’ is

-1

1/ 2
‘P::fl_};{f {%—-;-yz—}-zz}
4 X2
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Hence, if P denote the mechanical force on ¢ so that P = ¢F, we have by (69)
' ) o
P, = ng; @ {%-{‘ v+ 22}
szﬂl{§y{fi+ I N (.14
% J

—

Pn._,q,l/fﬁy. {’?‘+y2+z9} :

This set of forces is equivalent to a repulsion

Ko @ — % i 0)
p?
together with a force perpendicular to the axis of @, and towards it, of amount
V ) g AN
nq' 1 - sin @
<1 — 2 i 0>§I
2

where 7 is the radius from ¢ to ¢, and @ the angle it makes with the direction of
motion, and xu has been put for 1/v% Taking the two charges as a complete system,
the last force gives rise to a couple

wugq'u® sin @ cos 6 <1 _ &>
v?,

Q)
wu~ . H
{1 — — sin®@
v

tending to make 7 coincide with .

The resultant force is perpendicular to the surface W = constant, which passes
through the point @, %, z. 1t is, therefore, normal to the ellipsoid @?/a + % + 2% = ¢?,
where ¢ is a proper parameter. -

When the charges move at the speed of light, the disturbance due to ¢ is e’ntirely
confined to the plane of ¢ JZ, and the stress vanishes unless the charge ¢ lies in this
plane. : '

In terms of rand 0 the component of P perpendicular to « is, in any case

‘ AV
- qq’ sin 6 <1 — :j;)

' w . Ll
K2l — —5-5in* @
p

which vanishes when % = v, even when sin @ = 1. There is, therefore, no stress at
all between a pair of charges moving parallel to each other at the speed of light.
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Motion of a Charge in a Uniform Magnetic Field.

20. It has often been thought that some of the peculiar effects produced by a
magnet upon vacuum tube discharges are to be explained by supposing that the dis-
charge consists of charged particles flung off with considerable velocities from the
negative electrode, and that each charged particle in motion is acted on mechanically
by the magnetic field. It will, therefore, be of some interest to write down the forces
experienced by a charged particle when moving through a uniform magnetic field.

The system which produces the field may be in motion, but it is supposed to be a
purely magnetic system, s.c., one in which F = 0, so that a charged particle moving
with the system experiences no force. The velocity of this system will be supposed
to be u parallel to the axis of . The moving charge ¢ is supposed to have a velocity
w, whose components are w,, wy, ws. Then, if P denote the mechanical force on ¢, we
have, by (65),

P=qE+pVwH) . . . . . . . . . (88)

But the state of the field must be determined experimentally by estimating the
force on a unit magnetic pole, which we shall suppose is moving with the magnetic
system. This is exactly what we find when we make experiments to find the intensity
of any magnetic field by means of a magnet, for this field and the magnet are both
carried along by the rapid motion of the Earth. It is, in fact, R which we measure,
and not H.  We must, therefore, determine E and H in terms of R, the only quantity
which we can observe. This has already been done in equations (76) and (77), where
we have now to put F = 0, so that,

. W U
E, =0, m:%m, E,= —F°R,

H=R, H=_R, H=_k

Expanding P into its three components and substituting the above values of E and
H, we find

~

P, = pq {12& Ry — %“Rz}
P. — R LYXT"R 89
2 = pq qwshy + 3 Foe e .. (89)

P3:P~Q{— u-;iﬁRz'—’U’le})

When the charge and the magnetic system are moving together so that w, = u,
wy = wy = 0, then P vanishes. There is thus no force on a charged body when it is
placed near a magnet, and both are carried through the ether by the motion of the
earth.
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Bquivalent Distributions,

- 21. The following simple proposition, now to be proved, I have found of great
service when investigating the properties of a moving charged ellipsoid.

Take any electrical system in motion and draw the series of equilibrium surfaces
corresponding to successive values of W. Let ¥, ¥, be the values of the ““convection
potential 7 corresponding to two of these surfaces, and suppose that the surface ¥, lies
within W,. Then if the same charge ¢ be given to either of these two surfaces and:
be allowed to acquire its equilibrium distribution, then at all points not within the
surface W, the effects of the two charged surfaces are identical.

Tig. 3.

Let A be any electrified surface in motion having a charge ¢ with an equilibrium
distribution, and suppose for the moment that this distribution is rigidly fixed. Let
¥, be the ““convection potential ” due to A at any point. Let B be any one of the
equilibrium surfaces surrounding A. Now suppose that such a distribution is
imparted to B, that at all points outside B there is no disturbance due to the pair of
charged surfaces A and B. The electric force due to A and B therefore vanishes, and
hence so also does the surface integral of normal electric displacement when taken
over any surface enclosing both A and B. Any electric force due to Q contributes
nothing to this integral, since, as is seen from equations (26) to (28), it satisfies
div E = 0 identically. The charge on B is therefore equal in amount and opposite
in sign to that upon A, .., B has a charge — q. . Let W, denote the convection
potential due to this distribution on B.

Now since there is no disturbance due to A and B outside B, it follows that ¥ has
a constant value at all points outside B, and that, since ¥ vanishes at infinity, this
constant value is zero. Now ¥ = ¥, -+ ¥,. But outside B, ¥ = 0. Hence
outside B and at all points on B ¥, = — ¥,. Now B was taken to be an equilibrium
surface for A, so that ¥, is constant all over it. Hence Wy 1s also constant all over B,
and therefore the distribution on B is the same as if B had been “freely ” charged,
except, of course, that the charge is now on the inner side of the surface B, whereas
if B were freely charged it would be on the outer side of the surfuce. Since B has an-
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equilibrium distribution, Wy is constant throughout the interior of B, and hence the
field between A and B and inside A is the same as if A alone were present. The
restriction that the charge on A should be rigidly fixed may therefore be removed.
There is no disburbance inside A since there hoth ¥, and ¥, are constant.

We now see at once that if the distribution on B be changed in sign and that on A
be removed, then at all points outside B the field is exactly the same as that due
to A.  We have now only to substitute another equilibrium surface C for Bin order
to complete the proot of the proposition. :

The electric force just outside B is, of course, the same whether it is produced
either by the charge on B or by that on A. Thus, if E, be the normal component
reckoned outwards of that part of the electric force which is not derived from Q, then

Energy of a system of Moving Charges.

22. If it be allowed that there is energy stored in the ether when it sustains
electric and magnetic stresses, and that the amount of energy per unit volume does
not depend upon the manner in which those stresses are produced, but only upon the
values of the stresses themselves, then, as is well known, it follows that if U be the
total energy due to electric stress, and T the total energy due to magnetic stress, the
values of U and T are

U:iMﬁW@@&..;....uw%
T=([[pmededyd: . . . . (91),

the integration extending through all space, or, what is equivalent, throughout the
whole of those regions where E and H do not vanish.
If W be the total energy of the system, then

W=U+T . . . . . . . . .. (92

When Q = 0, and the electricity is distributed over surfaces which form the
boundaries of regions of no disturbance, the expression for the energy admits of an
important transformation. T have not succeeded in effecting any simplification in the
case in which both Q and ¥ exist. _

If we take the values of E and IT given by (26) to (31) in terms of ¥ when Q =0,
and remember that Kuv® = 1, we find that
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1 '7\1’\2 K+ _Kz,u,u“ d\If) K + Ko (dV }
W= SWH-H (dx/ + <dJ, o o? > dw dy dz

= sl + 2 () + (&) dedva

T+ (2] e

The second integral is by (30) and (31) simply
1 :
25 ”J pH? dxe dy dz = 2T.

The system will be supposed to consist of two surfaces bearing complementary
charges so distributed that it is only in the space between the two surfaces that E
and H do not vanish. If the “Equilibrium Conditions” of §15 are correct, these
distributions are also equilibrium distributions. If we integrate the first integral term
by term “by parts” and remember that ¥ satisfies the differential equation

I SN Y S
*dr dy? dz?

at all points between the surfaces, we find

W = oT —"EI\I’ {l@ m (Z\I’+ 7£(ZF} ds,
87

dx a dy o dz

where dS is an element of one of the surfaces, and [, m, n are the direction cosines of
the outward normal to dS, the integration extending over both surfaces. Over the
whole of each surface ¥ is constant, because the surface is the boundary of a region
of zero disturbance. Also if o be the surface density, we have by (81),

— K{ (i\g n aw n dx[f}

so that if ¢ be the charge upon the surface ¥, and — ¢ that on the surface ¥,, we
have

W =2T44¢¥, —Lq¥, . . . . . . . . (93)

The quantity 4q¥; — 1¢¥, is evidently the mechanical work which must be spent
in bringing the system together from a state of diffusion, in which, however, each
part is still moving with welocity w parallel to x. It might, perhaps, have been
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thought that this amount of work would be equal to the sum of the electric and
magnetic parts of the energy of the system, ¢.e., to U 4+ T. But instead, we have

390, — 39¥, =U = T.

The discrepancy arises from the fact that there must be an expenditure of direct
electric and magnetic energy while the system is being collected, in order to maintain
in its proper strength the system of displacement and magnetic currents which
accompany each moving elementary charge.

This transformation enables us to determine the energy of any system for which ¥
is known, with only one troublesome integration, viz., the space summation of
pH? /4.

If the surface corresponding to the suffix 2 is at an infinite distance from the
surface corresponding to the suffix 1, it will generally happen that ¥, = 0, and then
we have for the energy

W=2T+4%4v . . . . . . . . . . (99

where ¥ now refers to the finite surface.

In conclusion, I have much pleasure in expressing my best thanks to my friend,
Mr. Outver Heavisipg, F.R.S. Besides giving me some personal instruction in
Electromagnetic Theory on several occasions, he has constantly encouraged me
during the progress of this investigation.

MDCCCXCVI,— A, 4 v
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